244 research outputs found

    Refugial isolation and range expansions drive the genetic structure of \u3cem\u3eOxyria sinensis\u3c/em\u3e (Polygonaceae) in the Himalaya-Hengduan Mountains

    Get PDF
    The formation of the Mekong-Salween Divide and climatic oscillations in Pleistocene were the main drivers for the contemporary diversity and genetic structure of plants in the Himalaya-Hengduan Mountains (HHM). To identify the relative roles of the two historical events in shaping population history of plants in HHM, we investigated the phylogeographic pattern of Oxyria sinensis, a perennial plant endemic to the HHM. Sixteen chloroplast haplotypes were identified and were clustered into three phylogenetic clades. The age of the major clades was estimated to be in the Pleistocene, falling into several Pleistocene glacial stages and postdating the formation of the Mekong-Salween Divide. Range expansions occurred at least twice in the early and middle Pleistocene, but the spatial genetic distribution rarely changed since the Last Glacial Maximum. Our results suggest that temporary mountain glaciers may act as barriers in promoting the lineage divergence in O. sinensis and that subsequential range expansions and secondary contacts might reshape the genetic distribution in geography and blur the boundary of population differentiation created in the earlier glacial stages. This study demonstrates that Pleistocene climatic change and mountain glaciers, rather than the Mekong-Salween Divide, play the primary role in shaping the spatial genetic structure of O. sinensis

    The source of tragedy: love problems and the concept of eros in the story of L.D. Zinovieva-Annibal's “Thirty-Three Freaks”

    Get PDF
    The theme of love is reflected in a variety of ways in all the works of L.D. Zinovieva-Annibal. As one of the most representative works of the writer, the story “The Thirty-Three Freaks” is an important and particularly revealing link in proving the process of change in the creative method and worldview of the author. The aim of the study is to show the complex relationship between love and eros, not only in the story “The Thirty-Three Freaks”, but also in the real married life of Vyacheslav Ivanov and L.D. Zinovieva-Annibal. The writer's artistic embodiment of the ideas of her husband, the symbolist poet V. Ivanov, on the creation of a new religion, where Eros is “entrenched” and becomes a bearer of “solidarity”, is traced. V. Ivanov's utopian ideal project of organizing a new social form, although it ultimately failed, originally meant the intention to overcome individualism among the initiates, among the participants of the love action, which proves the influence of V. Solovyov's philosophy on the symbolists and, in particular, on the circle of visitors of “The Tower”. The study uses biographical, intertextual, and comparative-historical methods. The conclusion is made that in the ideal form of society, in which there is no place for individualism and egoism, the concept of inseparability of spirit and body should have prevailed. However, analysis of the novel “The Thirty-Three Freaks” shows that the heroine had not overcome individualism, that the path to comprehending of eros was theoretically declared, but was not realized in practice. Hence the tragic sound of the work and its disastrous finale

    Effect of Timing of Initial Cataract Surgery, Compliance to Amblyopia Therapy on Outcomes of Secondary Intraocular Lens Implantation in Chinese Children: A Retrospective Case Series

    Get PDF
    Purpose. As a secondary analysis, we reassess the association of initial congenital cataract surgery times, compliance to amblyopia therapy, and visual outcomes for a long-term follow-up in a secondary IOL implantation. Methods. Retrospective review of records of all infants with congenital cataracts who underwent secondary IOL implantation in the Eye and ENT Hospital of Fudan University from January 1, 2001, to December 31, 2007, and the minimum follow-up period was 5 years. Multiple regression analysis was used and the possible confounding factors were also analyzed to assess the effect on visual outcome. Results. A total of 110 patients (male: 59.1%) were included. The median (min–max) age at cataract extraction and IOL implantation was 7.5 (3.0–15.0) and 35.0 (22.0–184.0) months, respectively, and the average follow-up period was 99.3 ± 23.6 months. The median (min–max) BCVA at final follow-up was 0.20 (0.01–1.00). Compliance to amblyopia therapy was none, poor, and good in 21.8%, 24.5%, and 53.6%, respectively. Postoperative BCVA [logMAR, median (min–max) 0.70 (0.00–2.00)] linearly decreased with increasing cataract extraction time (per month) (ÎČ=0.04, 95% CI: 0.03–0.06, p<0.0001) in multivariable models with laterality and compliance to amblyopia therapy adjusted. Good compliance to amblyopia therapy was associated with better BCVA (logMAR) at last follow-up (ÎČ=−0.40, 95% CI = −0.53 to −0.27, p<0.0001) with laterality, opacity type, and extraction time adjusted. Conclusions. For Chinese infants with congenital cataract, an earlier primary congenital cataract surgery at an age of 3 to 15 months is associated with a better visual outcome. Good compliance to amblyopia therapy was also significant to visual outcome

    Bayesian co-estimation of selfing rate and locus-specific mutation rates for a partially selfing population

    Full text link
    We present a Bayesian method for characterizing the mating system of populations reproducing through a mixture of self-fertilization and random outcrossing. Our method uses patterns of genetic variation across the genome as a basis for inference about pure hermaphroditism, androdioecy, and gynodioecy. We extend the standard coalescence model to accommodate these mating systems, accounting explicitly for multilocus identity disequilibrium, inbreeding depression, and variation in fertility among mating types. We incorporate the Ewens Sampling Formula (ESF) under the infinite-alleles model of mutation to obtain a novel expression for the likelihood of mating system parameters. Our Markov chain Monte Carlo (MCMC) algorithm assigns locus-specific mutation rates, drawn from a common mutation rate distribution that is itself estimated from the data using a Dirichlet Process Prior (DPP) model. Among the parameters jointly inferred are the population-wide rate of self-fertilization, locus-specific mutation rates, and the number of generations since the most recent outcrossing event for each sampled individual

    A real-time PCR assay for quantification of parasite burden in murine models of leishmaniasis

    Get PDF
    Eukaryotic parasites in the genus Leishmania place approximately 350 million people per year at risk of disease. In addition to their global health significance, Leishmania spp. have served as an important model for delineating basic concepts in immunology such as T-helper cell polarization. There have been many qPCR-based assays reported for measuring parasite burden in humans and animals. However, these are largely optimized for use in clinical diagnosis and not specifically for animal models. This has led several of these assays to have suboptimal characteristics for use in animal models. For example, multi-copy number genes have been frequently used to increase sensitivity but are subject to greater plasticity within the genome and thus may confound effects of experimental manipulations in animal models. In this study, we developed a sybr-green based quantitative touchdown PCR assay for a highly conserved and single-copy putative RNA-binding protein, DRBD3. With primers that share greater than 90% sequence identity across all sequenced Leishmania spp., we demonstrate that this assay has a lower limit of detection of 100 fg of parasite DNA for Leishmania major, L. donovani, L. venezuelensis, and L. panamensis. Using C57BL6/J mice, we used this assay to monitor parasite burden over 1 month of infection with two strains of L. major (Seidman and Friedlin), and L. venezeuelensis. These characteristics rival the sensitivity of previously reported qPCR based methods of parasite quantitation while amplifying a stable, single copy gene. Use of this protocol in the future will lead to improved accuracy in animal based models and help to tease apart differences in biology of host-parasite interactions

    A Health Monitoring System Based on Flexible Triboelectric Sensors for Intelligence Medical Internet of Things and its Applications in Virtual Reality

    Full text link
    The Internet of Medical Things (IoMT) is a platform that combines Internet of Things (IoT) technology with medical applications, enabling the realization of precision medicine, intelligent healthcare, and telemedicine in the era of digitalization and intelligence. However, the IoMT faces various challenges, including sustainable power supply, human adaptability of sensors and the intelligence of sensors. In this study, we designed a robust and intelligent IoMT system through the synergistic integration of flexible wearable triboelectric sensors and deep learning-assisted data analytics. We embedded four triboelectric sensors into a wristband to detect and analyze limb movements in patients suffering from Parkinson's Disease (PD). By further integrating deep learning-assisted data analytics, we actualized an intelligent healthcare monitoring system for the surveillance and interaction of PD patients, which includes location/trajectory tracking, heart monitoring and identity recognition. This innovative approach enabled us to accurately capture and scrutinize the subtle movements and fine motor of PD patients, thus providing insightful feedback and comprehensive assessment of the patients conditions. This monitoring system is cost-effective, easily fabricated, highly sensitive, and intelligent, consequently underscores the immense potential of human body sensing technology in a Health 4.0 society

    3D-Epigenomic Regulation of Gene Transcription in Hepatocellular Carcinoma.

    Get PDF
    The fundamental cause of transcription dysregulation in hepatocellular carcinoma (HCC) remains elusive. To investigate the underlying mechanisms, comprehensive 3D-epigenomic analyses are performed in cellular models of THLE2 (a normal hepatocytes cell line) and HepG2 (a hepatocellular carcinoma cell line) using integrative approaches for chromatin topology, genomic and epigenomic variation, and transcriptional output. Comparing the 3D-epigenomes in THLE2 and HepG2 reveal that most HCC-associated genes are organized in complex chromatin interactions mediated by RNA polymerase II (RNAPII). Incorporation of genome-wide association studies (GWAS) data enables the identification of non-coding genetic variants that are enriched in distal enhancers connecting to the promoters of HCC-associated genes via long-range chromatin interactions, highlighting their functional roles. Interestingly, CTCF binding and looping proximal to HCC-associated genes appear to form chromatin architectures that overarch RNAPII-mediated chromatin interactions. It is further demonstrated that epigenetic variants by DNA hypomethylation at a subset of CTCF motifs proximal to HCC-associated genes can modify chromatin topological configuration, which in turn alter RNAPII-mediated chromatin interactions and lead to dysregulation of transcription. Together, the 3D-epigenomic analyses provide novel insights of multifaceted interplays involving genetics, epigenetics, and chromatin topology in HCC cells

    A Bayesian Approach to Inferring Rates of Selfing and Locus-Specific Mutation.

    Get PDF
    We present a Bayesian method for characterizing the mating system of populations reproducing through a mixture of self-fertilization and random outcrossing. Our method uses patterns of genetic variation across the genome as a basis for inference about reproduction under pure hermaphroditism, gynodioecy, and a model developed to describe the self-fertilizing killifish Kryptolebias marmoratus. We extend the standard coalescence model to accommodate these mating systems, accounting explicitly for multilocus identity disequilibrium, inbreeding depression, and variation in fertility among mating types. We incorporate the Ewens sampling formula (ESF) under the infinite-alleles model of mutation to obtain a novel expression for the likelihood of mating system parameters. Our Markov chain Monte Carlo (MCMC) algorithm assigns locus-specific mutation rates, drawn from a common mutation rate distribution that is itself estimated from the data using a Dirichlet process prior model. Our sampler is designed to accommodate additional information, including observations pertaining to the sex ratio, the intensity of inbreeding depression, and other aspects of reproduction. It can provide joint posterior distributions for the population-wide proportion of uniparental individuals, locus-specific mutation rates, and the number of generations since the most recent outcrossing event for each sampled individual. Further, estimation of all basic parameters of a given model permits estimation of functions of those parameters, including the proportion of the gene pool contributed by each sex and relative effective numbers
    • 

    corecore